Nonlinear nonlocal diffusion: A fractional porous medium equation

نویسنده

  • Arturo de Pablo
چکیده

We develop a theory of existence and uniqueness for the following porous medium equation with fractional diffusion,  ∂u ∂t + (−∆)σ/2(|u|m−1u) = 0, x ∈ RN , t > 0, u(x, 0) = f(x), x ∈ RN , with data f ∈ L1(RN ) and exponents 0 < σ < 2, m > m∗ = (N − σ)+/N . An L1-contraction semigroup is constructed. Nonnegative solutions are proved to be continuous and strictly positive for all x ∈ RN , t > 0. We explore the range 0 < m ≤ m∗ by requiring f ∈ L1(RN ) ∩ Lp(RN ) for some p(m) > 1.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Recent progress in the theory of Nonlinear Diffusion with Fractional Laplacian Operators

We report on recent progress in the study of nonlinear diffusion equations involving nonlocal, long-range diffusion effects. Our main concern is the so-called fractional porous medium equation, ∂tu + (−∆)(u) = 0, and some of its generalizations. Contrary to usual porous medium flows, the fractional version has infinite speed of propagation for all exponents 0 < s < 1 and m > 0; on the other han...

متن کامل

The mathematical theories of diffusion . Nonlinear and fractional diffusion ∗

We describe the mathematical theory of diffusion and heat transport with a view to including some of the main directions of recent research. The linear heat equation is the basic mathematical model that has been thoroughly studied in the last two centuries. It was followed by the theory of parabolic equations of different types. In a parallel development, the theory of stochastic differential e...

متن کامل

Nonlinear Diffusion with Fractional Laplacian Operators

We describe two models of flow in porous media including nonlocal (longrange) diffusion effects. The first model is based on Darcy’s law and the pressure is related to the density by an inverse fractional Laplacian operator. We prove existence of solutions that propagate with finite speed. The model has the very interesting property that mass preserving self-similar solutions can be found by so...

متن کامل

Nonlocal porous medium equation: Barenblatt profiles and other weak solutions

A degenerate nonlinear nonlocal evolution equation is considered; it can be understood as a porous medium equation whose pressure law is nonlinear and nonlocal. We show the existence of sign changing weak solutions to the corresponding Cauchy problem. Moreover, we construct explicit compactly supported selfsimilar solutions which generalize Barenblatt profiles — the well-known solutions of the ...

متن کامل

Application of the Fractional Conservation of Mass to Gas Flow Diffusivity Equation in Heterogeneous Porous Media

In this paper we reconsider the classical nonlinear diffusivity equation of real gas in an heterogenous porous medium in light of the recent studies about the generalized fractional equation of conservation of mass. We first recall the physical meaning of the fractional conservation of mass recently studied by Wheatcraft and Meerschaert [22] and then consider the implications in the classical m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011